Processing math: 100%

数値解析 第6回 (1) 数値積分の使いどころ

数値積分の使いどころ

 数値積分の使いどころをいくつか挙げてみます:
(1) y=f(x) の観測値から積分値を推定したい
 たとえば心臓疾患の検査項目に、心臓のポンプの力を測る「左室駆出率 ( LVEF ) 」というものがあります: = 健康な人は 60~80% ありますが、 心不全になるとこれが 20% とに低下してしまい、 酸素が十分に取り込めなくなってとてもヤバいです。
 心臓の容積と言っても 心臓を取り出して測れる訳ではありません ので、 超音波画像から座標を読み取って、 数値積分で容積を推定 します。
(2) 式では書けない定積分の近似値を求めたい
 たとえば確率論や統計学などに用いるガウスの誤差関数 erf(x)=2πx0et2dt は、式では書けませんが近似値が必要 です。 (積分記号で書けているじゃないか、というツッコミは無しです。)
(3) π などの近似値を積分表示から求めたい
 たとえば π=4101x2dx の右辺を数値積分で求めると π の近似値が求まる、といった具合です。