ヤコビ法では収束しないがガウス・ザイデル法なら収束する例
$\dps{
A = \mat{rrrr}{
21 & -4 & 5 & 3 \\
4 & 1 & 5 & 5 \\
-3 & 2 & 17 & -4 \\
-3 & 5 & -2 & 22 \\
},
\qquad
b = \mat{c}{
1 \\
2 \\
3 \\
4 \\
}
}$
として $A\xxx=\bbb$ をヤコビ法で解きます。
ヤコビ法
k = 0 : x = ( 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000)
k = 1 : x = ( 0.0476190476, 2.0000000000, 0.1764705882, 0.1818181818)
k = 2 : x = ( 0.3605805959, 0.0180799593, -0.0076394194, -0.2501909855)
k = 3 : x = ( 0.0886233281, 1.8468296409, 0.1791069369, 0.2261846888)
...
k = 125 : x = (-10.2035246718, 76.9985497636, 6.6578133504, 17.7967710266)
k = 126 : x = ( 10.5864199630, -79.4588231979, -6.4953287904, -18.1039861878)
k = 127 : x = (-10.9546042989, 82.6508950391, 7.1329977373, 19.0937599226)
k = 128 : x = ( 11.3646338906, -85.3153711040, -6.9876801932, -19.4478314826)
A x - b =(485.6369007043, -174.0343939207, -248.7238812335, -878.5476894229)
ヤコビ法では収束しませんでした。
同じ方程式をガウス・ザイデル法で解きます。
ガウス・ザイデル法
k = 0 : x = ( 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000)
k = 1 : x = ( 0.0476190476, 1.8095238095, -0.0280112045, -0.2254901961)
k = 2 : x = ( 0.4311724690, 1.5428171269, 0.0179954335, -0.1083898800)
k = 3 : x = ( 0.3526886181, 1.0412177603, 0.0907100479, 0.0015180522)
...
k = 31 : x = ( 0.0070093459, 0.1578771698, 0.1979305741, 0.1648865153)
k = 32 : x = ( 0.0070093458, 0.1578771696, 0.1979305741, 0.1648865153)
k = 33 : x = ( 0.0070093458, 0.1578771696, 0.1979305741, 0.1648865154)
k = 34 : x = ( 0.0070093458, 0.1578771696, 0.1979305741, 0.1648865154)
A x - b =(0.0000000000, 0.0000000000, -0.0000000000, 0.0000000000)
ガウス・ザイデル法では収束しました。