-
R.R. Goundar, K. Shiota, and M. Toyonaga,
A Novel Method for Elliptic Curve Multi-Scalar Multiplication,
International Journal of Applied Mathematics and Computer Sciences, vol. 4, no.9, pp. 1-5, 2009.
-
R.R. Goundar, K. Shiota, and M. Toyonaga,
SPA Resistant Scalar Multiplication using Golden Ratio Addition Chain Method,
IAENG International Journal of Applied Mathematics, vol. 38, issue 2, pp. 83-88, Jun. 2008.
-
R.R. Goundar, K. Shiota, and M. Toyonaga,
New Strategy for Doubling-free Short Addition-Subtraction Chain,
Applied Mathematics & Information Sciences -- An International Journal, vol.2, issue 2, pp.123-133, May 2008.
-
K. Ohta and K. Shiota,
Construction of CM-Curves Suitable for Cryptosystems Using Weil Pairing ( in Japanese ),
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 27(2006), No.1.
-
T. Saiki and K. Shiota,
Cryptography using the trace map on elliptic curves ( in Japanese ),
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 26(2005), No.4.
-
T. Shimaoka and K. Shiota,
Secret sharing scheme on elliptic curves ( in Japanese ),
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 25(2004), pp.173-178.
-
M. Ohshima and K. Shiota,
Algorithm for computing n-th roots in modular operation ( in Japanese ),
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 23(2002), pp.1-7.
-
N. Kikukawa and K. Shiota,
On the codes constructed from orthogonal Latin square graphs ( in Japanese ),
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 22(2001), pp.35-48.
-
K. Shiota, Table of left O-ideal classes
in rational quaternion algebras I; II; III,
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 14(1993), pp.15-94;
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 15(1994), pp.15-80;
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 15(1994), pp.81-122.
-
K. Shiota, On primitive forms of certain type of level q=q1q2q3 ( in Japanese ),
Mem. Fac. Sci. Kochi Univ. ( Inf. Sci. ), 15(1994), pp.1-13.
As a continuation of the above,
the author treats the case of composite levels.
-
K. Shiota, On theta series and the splitting of S2(Gamma0(q)),
J. Math. Kyoto Univ., 31(1991), pp.909-930.
The author calculated the theta series appearing in 'the Basis Problem'
for the cases of ellipitc modular forms of prime levels,
and the linear degenerations of them.
He found a lot of irregular degenerations,
which cause some rational decomposition of the spaces of modular forms.
Especially, he found a counter example for
( the weakest version of )
the conjecture of Hecke.
-
K. Shiota, On the explicit models of Shimura's elliptic curves,
J. Math. Soc. Japan, 38(1986), pp.649-659.
The author determined the explicit models
of Shimura's elliptic curves
associated to the Neben type elliptic modular forms
for the prime levels p=29,37 and 41.
They are elliptic curves defined over real quadretic fields
with good reduction everywhere,
and have some rational torsion points.