
数値解析 ( 塩田 )

— 固有値・固有ベクトルの数値計算 —

状況設定 対角化可能な n 次正方行列 A に対し、A の固有値・固有ベクトルの組
(λj ,vj) j = 1, 2, · · · , n

（ 以後、「固有システム」と呼ぶ ）を求めたい。

1. 手計算と同じ方法
アルゴリズム� �
1◦ A の固有多項式 φA(x) = det(xE −A) を求める。( E は n 次の単位行列 )

2◦ φA(x) = 0 の解を求め、λ1, · · ·, λn とする。
3◦ 各固有値 λj に対して (λjE −A)v = 0 の非零解を求め、vj とする。� �

ただし、
1◦ φA(x) = xn+ c1x

n−1+ · · ·+ cn の係数は次のアルゴリズムを用いれば数式処理ソフ
トを使わずに計算できる。

2◦ 例えばニュートン法を用いる。
3◦ (λjE −A) は正則ではないので、このままではガウスの消去法等が使えない。そこ
で、例えば v の第 1成分に乱数を入れて残る (n− 1)個の成分についての方程式を
立ててガウスの消去法等を用いる。

Faddeev-Leverrier 法 ( Frame法 とも呼んでいた )� �
X = E

for k = 1 to n do

X = AX

ck = −(X の対角成分和 ) / k

X = X + ck E� �
Faddeev-Leverrier 法の実行例

A: -4 6 -9 -6 -8
4 -9 5 4 4
4 -2 8 3 -1
1 0 9 -1 2
-2 -7 1 1 6

k = 1
X: -4 6 -9 -6 -8

4 -9 5 4 4
4 -2 8 3 -1
1 0 9 -1 2
-2 -7 1 1 6

c[1] = 0

k = 2
X: 14 -4 -68 19 5

-36 67 -1 -45 -41
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13 33 44 -12 -48
27 -26 56 24 -7
-27 7 6 -8 25

c[2] = -87

k = 3
X: 13 -301 269 204 704

97 253 -230 137 -127
-8 203 -452 -111 -241
-37 333 -499 -42 -544
276 197 192 154 -150

c[3] = 126

k = 4
X: -1888 -1923 1936 -731 2047

599 -1480 288 -20 482
-89 464 -2761 -248 -466
656 1587 -1782 -571 -969
654 -333 1399 -470 -1448

c[4] = 2037

k = 5
X: -5369 0 0 0 0

0 -5369 0 0 0
0 0 -5369 0 0
0 0 0 -5369 0
0 0 0 0 -5369

c[5] = 5369

2. 累乗法
A の固有値が条件

|λ1 | > max( |λ2 |, · · · , |λn | ) · · · · · · (∗)

を満たせば、λ1, v1 は次の単純なループで求まる。ただし、⟨ , ⟩ は標準内積 ⟨x,y⟩ =∑n
i=1 xi yi を表す。

累乗法� �
v = ( ランダムな単位ベクトル )

repeat

新 v = (Av 方向の単位ベクトル )

until (新 v) ≒± (旧 v)

v1 = v

λ1 = ⟨v, Av⟩/⟨v,v⟩� �
原理 最初の v を v0 とおく。A が対角化可能であることを仮定しているので固有ベクト
ルたちは一次独立であり、

v0 = c1v1 + · · ·+ cnvn

と書くことができる。Avj = λjvj を繰り返し用いることにより

Akv0 = c1 λ
k
1 v1 + · · ·+ cn λ

k
n vn ( k = 1, 2, · · · )

が成り立ち、条件 (∗) から Akv0 ≒ c1 λ
k
1 v1 ( k : 十分大 ) となって v は v1 の方向に安

定してゆく。
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3. デフレーション
上の仮定 (∗) のもと、次の補助命題を用いれば 2番目に絶対値の大きい固有値について

も固有値・固有ベクトルを求めることができる：

補助命題 次のアルゴリズムにより行列 B を作ると、 Bv1 = 0v1

Bvj = λjvj ( j ≧ 2 )

が成り立つ。すなわち B は A と同じ固有ベクトル v1, v2, · · · , vn を持つが、v1 に対す
る固有値だけが 0 に置き換わっている。

デフレーション� �
1◦ A の転置行列 tA にも累乗法を実行して、tA の λ1 に対する固有ベクトル w を
求める。( A と tA は同じ固有値を持つことに注意。)

2◦ u = 1
twv1

w とおく。( 分母はスカラーであることに注意。)

3◦ B = A− λ1v1
tu とおく。（ v1

tu は n次行列であることに注意。）� �
証明 tAu = λ1u の転置 †を取ると

tuA = λ1
tu

となるので j ≧ 2 に対しては

(λ1
tu)vj = (tuA)vj =

tu(Avj) =
tu(λj vj) = λj

tuvj

が成り立ち、
(λ1 − λj)

tuvj = 0

となる。条件 (∗) から λ1 ̸= λj ゆえ
tuvj = 0

が言え、従って j ≧ 2 に対しては

Bvj = (A− λ1v1
tu)vj = Avj − λ1v1(

tuvj) = λjvj − λ1v1 0 = λjvj

が成り立つ。また
tuv1 =

1
twv1

twv1 = 1

ゆえ
Bv1 = (A− λ1v1

tu)v1 = Avj − λ1v1(
tuv1) = λ1v1 − λ1v1 = 0

となる。(証明終)

† t(AB) = (tB)(tA) が成り立ち、縦ベクトル x, y について内積は ⟨x,y⟩ = txy と書ける。
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デフレーションの実行例 前回ネズミの絵で説明した A =

(
3 1

1 3

)
の場合

0◦ A の最大固有値は λ1 = 4 で、v1 =

(
1

1

)
.

1◦ A は対称行列ゆえ w は v1 と同じで w =

(
1

1

)
.

2◦ twv1 = (1 1)

(
1

1

)
= 1 + 1 = 2 ゆえ u =

1

2

(
1

1

)
=

(
1/2

1/2

)
.

3◦ B = A− λ1v1
tu =

(
3 1

1 3

)
− 4

(
1

1

)
(1/2 1/2)

=

(
3 1

1 3

)
−
(

2 2

2 2

)
=

(
1 −1

−1 1

)
.

すると、B に累乗法を適用して得られる固有値・固有ベクトルは

λ2 = 2, v2 =

(
1

−1

)
.

定理� �
A の n個の固有値の絶対値が

|λ1 | > |λ2 | > · · · > |λn | > 0 · · · · · · (♯)

のように全て異なっていると仮定する。このとき、累乗法とデフレーションを繰り返
し行うことにより (λ1,v1), (λ2,v2), · · ·, (λn,vn) を全て求めることができる。� �

4. 累乗法に関する注意
• 複素行列を扱うときは次の 3点を修正する

◦ 標準内積の定義には片方に複素共役を付ける：
⟨x,y⟩ =

n∑
i=1

xi × yi

◦ 累乗法の終了条件は「 新 v ≒ (旧 v のあるスカラー倍) 」 とする。
(複素成分の単位ベクトルは、±倍だけでなく eiθ 倍してもそれと並行だから。)

◦ 最初のランダムな v も複素数成分にする。

• A に絶対値の等しい固有値が存在する場合は、複素数の乱数 α を用いて
B = αE +A

を考える。A の固有値に重複がなければ、たいてい B の固有値 µj たちは条件 (♯)

を満たすので、定理により B の固有システム
(µj ,wj) j = 1, · · · , n

を求めることができる。このとき
(µj − α,wj) j = 1, · · · , n

として A の固有システムが得られる。
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