ガウス・ザイデル法実行例


式・未知数を入れ替えることにより ガウス・ザイデル法の収束の速さが変わる例

$\dps{ \left\{ \begin{array}{l} 3 x + 2 y + 2 z = 7 \\ 2 x + 5 y - 4 z = 3 \\ x + y + 7 z = 9 \\ \end{array} \right. }$
を解きます。
k =  0 : (x,y,z) = ( 0.0000000000,  0.0000000000,  0.0000000000)
k =  1 : (x,y,z) = ( 2.3333333333, -0.3333333333,  1.0000000000)
k =  2 : (x,y,z) = ( 1.8888888889,  0.6444444444,  0.9238095238)
k =  3 : (x,y,z) = ( 1.2878306878,  0.8239153439,  0.9840362812)
k =  4 : (x,y,z) = ( 1.1280322499,  0.9360161250,  0.9908502322)
...
k = 24 : (x,y,z) = ( 1.0000000014,  0.9999999993,  0.9999999999)
k = 25 : (x,y,z) = ( 1.0000000005,  0.9999999997,  1.0000000000)
k = 26 : (x,y,z) = ( 1.0000000002,  0.9999999999,  1.0000000000)
k = 27 : (x,y,z) = ( 1.0000000001,  1.0000000000,  1.0000000000)
k = 28 : (x,y,z) = ( 1.0000000000,  1.0000000000,  1.0000000000)
 同じ方程式を、式の順番・未知数の順番を全て逆にして
$\dps{ \left\{ \begin{array}{l} 7 x + y + z = 9 \\ - 4 x + 5 y + 2 z = 3 \\ 2 x + 2 y + 3 z = 7 \\ \end{array} \right. }$
として解きます。
k =  0 : (x,y,z) = ( 0.0000000000,  0.0000000000,  0.0000000000)
k =  1 : (x,y,z) = ( 1.2857142857,  1.6285714286,  0.3904761905)
k =  2 : (x,y,z) = ( 0.9972789116,  1.2416326531,  0.8407256236)
k =  3 : (x,y,z) = ( 0.9882345319,  1.0542973761,  0.9716453947)
k =  4 : (x,y,z) = ( 0.9962938899,  1.0083769540,  0.9968861040)
...
k = 12 : (x,y,z) = ( 1.0000000027,  1.0000000143,  0.9999999887)
k = 13 : (x,y,z) = ( 0.9999999996,  1.0000000042,  0.9999999975)
k = 14 : (x,y,z) = ( 0.9999999998,  1.0000000008,  0.9999999996)
k = 15 : (x,y,z) = ( 0.9999999999,  1.0000000001,  1.0000000000)
k = 16 : (x,y,z) = ( 1.0000000000,  1.0000000000,  1.0000000000)
随分ステップ数が少なくなりました。