アルゴリズム論特論（塩田）

2013年7月18日 離散対数問題

$\bmod p$ でのべき乗

$\bmod 2$ ：
powers of 1： 1

```
mod 3:
powers of 1: 1 1
powers of 2: 2 1*
mod 5:
powers of 1: 1 1 1 1
powers of 2: 2 4 3 1 *
powers of 3: 3 4 2 1 *
powers of 4: 4 1 4 1
```

mod 7:
powers of $1: \begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$
powers of $2: \begin{array}{llllll}2 & 4 & 1 & 2 & 4 & 1\end{array}$
powers of 3 : $3 \quad 2 \quad 6 \quad 4 \quad 5 \quad 1$ *
powers of 4: $4 \quad 2 \quad 1 \quad 4 \quad 2 \quad 1$
powers of 5: $5 \quad 4 \quad 6 \quad 2 \quad 3 \quad 1$ *
powers of 6: $\begin{array}{lllllll}6 & 1 & 6 & 1 & 6 & 1\end{array}$
mod 11:
powers of $1: \begin{array}{llllllllll}1: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
powers of 2: $24 \begin{array}{llllllllll} & 4 & 8 & 5 & 10 & 9 & 7 & 3 & 6 & 1\end{array} *$
powers of $3: \begin{array}{llllllllll}3 & 9 & 5 & 4 & 1 & 3 & 9 & 5 & 4 & 1\end{array}$
powers of $4: \begin{array}{llllllllll}4 & 5 & 9 & 3 & 1 & 4 & 5 & 9 & 3 & 1\end{array}$
powers of $5: \begin{array}{lllllllllll}5 & 3 & 4 & 9 & 1 & 5 & 3 & 4 & 9 & 1\end{array}$
powers of 6: $6 \times 3 \begin{array}{lllllllll} & 7 & 9 & 10 & 5 & 8 & 4 & 2 & 1\end{array} *$
powers of $7: \begin{array}{lllllllllll}7 & 5 & 2 & 3 & 10 & 4 & 6 & 9 & 8 & 1\end{array} *$
powers of 8: $8 \quad 9 \quad 6 \quad 410 \quad 3 \quad 2 \quad 5 \quad 7 \quad 1$ *
powers of $9: \begin{array}{lllllllllll}9 & 4 & 3 & 5 & 1 & 9 & 4 & 3 & 5 & 1\end{array}$
powers of 10: $10 \begin{array}{lllllllll}10 & 10 & 1 & 10 & 1 & 10 & 1 & 10 & 1\end{array}$
$\bmod 13$:
powers of $1: \begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
powers of $2: \begin{array}{lllllllllllll} & 4 & 4 & 8 & 6 & 12 & 11 & 9 & 5 & 10 & 7 & 1 & *\end{array}$
powers of $3: \begin{array}{llllllllllll} & 3 & 9 & 1 & 3 & 9 & 1 & 3 & 9 & 1 & 3 & 9\end{array}$
powers of $4: 4$
powers of $5: \quad 5 \quad 12 \quad 8 \quad 1 \quad 5 \quad 12$

powers of $7: \begin{array}{lllllllllllll}7 & 10 & 5 & 9 & 11 & 12 & 6 & 3 & 8 & 4 & 2 & 1 & *\end{array}$

powers of $9: \begin{array}{lllllllllllll}9 & 3 & 1 & 9 & 3 & 1 & 9 & 3 & 1 & 9 & 3 & 1\end{array}$
powers of 10: $10912 \begin{array}{llllllllll} & 9 & 12 & 4 & 1 & 10 & 9 & 12 & 3 & 4 \\ 1\end{array}$
powers of 11: $11 \quad 4 \quad 5 \quad 3 \quad 7 \quad 12 \quad 2 \quad 9 \quad 810$

mod 17:
powers of $1: \begin{array}{llllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ powers of $2: \begin{array}{lllllllllllllllllllllll}2 & 4 & 8 & 16 & 15 & 13 & 9 & 1 & 2 & 4 & 8 & 16 & 15 & 13 & 9 & 1\end{array}$
 powers of $4: \begin{array}{llllllllllllllll}4 & 16 & 13 & 1 & 4 & 16 & 13 & 1 & 4 & 16 & 13 & 1 & 4 & 16 & 13 & 1\end{array}$ powers of $5: \begin{array}{llllllllllllllll}5 & 8 & 6 & 13 & 14 & 2 & 10 & 16 & 12 & 9 & 11 & 4 & 3 & 15 & 7 & 1\end{array}$ * powers of 6: 6 powers of $7: \begin{array}{lllllllllllllllll}7 & 15 & 3 & 4 & 11 & 9 & 12 & 16 & 10 & 2 & 14 & 13 & 6 & 8 & 5 & 1 & *\end{array}$ powers of 8: $8 \quad 13$ 2 16 powers of $9: \begin{array}{llllllllllllllll}9 & 13 & 15 & 16 & 8 & 4 & 2 & 1 & 9 & 13 & 15 & 16 & 8 & 4 & 2 & 1\end{array}$
 powers of $11: 11 \quad 2 \quad 5 \quad 4 \quad 10 \quad 8 \quad 316$ powers of 12: $12 \begin{array}{llllllllllllllll}12 & 11 & 13 & 3 & 2 & 7 & 16 & 5 & 9 & 6 & 4 & 14 & 15 & 10 & 1\end{array}$ * powers of 13: 1316411316 powers of 14: 14 $9 \quad 7 \quad 131215 \quad 6 \quad 16$ powers of 15: $15 \begin{aligned} & 4 \\ & 9\end{aligned} 16 \quad 2 \quad 13$

$\bmod 19:$
powers of $1: \begin{array}{llllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array} 1$ powers of $2: \begin{array}{lllllllllllllllllll}2 & 4 & 8 & 16 & 13 & 7 & 14 & 9 & 18 & 17 & 15 & 11 & 3 & 6 & 12 & 5 & 10 & 1\end{array} *$ powers of $3: \quad 3 \quad 9 \quad 8 \quad 5 \quad 15 \quad 7 \quad 2 \quad 6 \quad 1816101114$ powers of $4: \begin{array}{lllllllllllllllllll}4 & 16 & 7 & 9 & 17 & 11 & 6 & 5 & 1 & 4 & 16 & 7 & 9 & 17 & 11 & 6 & 5 & 1\end{array}$ powers of $5: \begin{array}{lllllllllllllllllll}5 & 6 & 11 & 17 & 9 & 7 & 16 & 4 & 1 & 5 & 6 & 11 & 17 & 9 & 7 & 16 & 4 & 1\end{array}$ powers of $6: \begin{array}{llllllllllllllllllll}6 & 17 & 7 & 4 & 5 & 11 & 9 & 16 & 1 & 6 & 17 & 7 & 4 & 5 & 11 & 9 & 16 & 1\end{array}$ powers of $7: \begin{array}{lllllllllllllllllll}7 & 11 & 1 & 7 & 11 & 1 & 7 & 11 & 1 & 7 & 11 & 1 & 7 & 11 & 1 & 7 & 11 & 1\end{array}$
 powers of $9: \begin{array}{llllllllllllllllll}9 & 5 & 7 & 6 & 16 & 11 & 4 & 17 & 1 & 9 & 5 & 7 & 6 & 16 & 11 & 4 & 17 & 1\end{array}$
 powers of $11: \begin{array}{lllllllllllllllllll}11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1\end{array}$ powers of 12: $12 \begin{array}{lllllllllllllllllll}11 & 18 & 7 & 8 & 1 & 12 & 11 & 18 & 7 & 8 & 1 & 12 & 11 & 18 & 7 & 8 & 1\end{array}$

 powers of 16: 16 powers of 17: 17×1116 411 powers of 18: 18 1 18 18 18 18 18 18 18 18 18 1818
mod 23:
powers of $1: \begin{array}{lllllllllllllllllllllll}1\end{array}$ powers of $2: \begin{array}{llllllllllllllllllllll}16 & 4 & 8 & 16 & 9 & 18 & 13 & 3 & 6 & 12 & 1 & 2 & 4 & 8 & 16 & 9 & 18 & 13 & 3 & 6 & 12 & 1\end{array}$ powers of $3: \begin{array}{llllllllllllllllllllll} & 3 & 9 & 4 & 12 & 13 & 16 & 2 & 6 & 18 & 8 & 1 & 3 & 9 & 4 & 12 & 13 & 16 & 2 & 6 & 18 & 8\end{array}$ powers of $4: \begin{array}{llllllllllllllllllllllllllllllll}4 & 16 & 18 & 3 & 12 & 2 & 8 & 9 & 13 & 6 & 1 & 4 & 16 & 18 & 3 & 12 & 2 & 8 & 9 & 13 & 6 & 1\end{array}$

 powers of $8: 818$
 powers of 10: 10 powers of 11: $11 \begin{array}{lllllllllllllllllllllllllllll} & 6 & 20 & 13 & 5 & 9 & 7 & 8 & 19 & 2 & 22 & 12 & 17 & 3 & 10 & 18 & 14 & 16 & 15 & 4 & 21 & 1 & *\end{array}$


```
powers of 17: 17 13 14 8 21 12 20 18 7 7 4 4 22 6 6 10 10 9 15 2 2 11 
```



```
powers of 19: 19 16 5 3 3 11 2 2 15 9 10 6 22 4 4 7 18 18 20 12 21 8
```



```
powers of 21: 21 4 15 16 14 18 10 3 3 17 12 22 2 2 19 10
powers of 22: 22 1 22 1 22 1 22 1 22 1 22 1 22 1 22 1 22 1 22 1 22 1
```


$\bmod p$ で底 a の生成する部分群 $\langle a\rangle$

$\bmod 2:$
$\langle 1\rangle=[1] *$
mod 3：
＜1＞＝［1］
$\langle 2\rangle=[1,2] *$
$\bmod 5:$
＜1＞＝［1］
$\langle 2\rangle=[1,2,3,4] *$
$\langle 3\rangle=[1,2,3,4] *$
$\langle 4\rangle=[1,4]$
$\bmod 7:$
＜1＞＝［1］
$\langle 2\rangle=[1,2,4]$
$\langle 3\rangle=[1,2,3,4,5,6] *$
$\langle 4\rangle=[1,2,4]$
$\langle 5\rangle=[1,2,3,4,5,6] *$
$\langle 6\rangle=[1,6]$
$\bmod 11:$
＜1＞＝［1］
$\langle 2\rangle=[1,2,3,4,5,6,7,8,9,10] *$
$\langle 3\rangle=[1,3,4,5,9]$
$\langle 4\rangle=[1,3,4,5,9]$
$\langle 5\rangle=[1,3,4,5,9]$
$\langle 6\rangle=[1,2,3,4,5,6,7,8,9,10] *$
$\langle 7\rangle=[1,2,3,4,5,6,7,8,9,10] *$
$\langle 8\rangle=[1,2,3,4,5,6,7,8,9,10] *$
$\langle 9\rangle=[1,3,4,5,9]$
$\langle 10\rangle=[1,10]$
mod 13：
＜1＞＝［1］
$\langle 2\rangle=[1,2,3,4,5,6,7,8,9,10,11,12] *$
$\langle 3\rangle=[1,3,9]$
$\langle 4\rangle=[1,3,4,9,10,12]$
$\langle 5\rangle=[1,5,8,12]$
$\langle 6\rangle=[1,2,3,4,5,6,7,8,9,10,11,12] *$
$\langle 7\rangle=[1,2,3,4,5,6,7,8,9,10,11,12] *$

```
< 8> = [1, 5, 8, 12]
< 9> = [1, 3, 9]
<10\rangle = [1, 3, 4, 9, 10, 12]
<11> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] *
<12\rangle = [1, 12]
```

$\bmod 17:$
< 1> = [1]
$\langle 2\rangle=[1,2,4,8,9,13,15,16]$
$\langle 3\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] *$
$\langle 4\rangle=[1,4,13,16]$
$\langle 5\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] *$
$\langle 6\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] *$
$\langle 7\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] *$
$\langle 8\rangle=[1,2,4,8,9,13,15,16]$
$\langle 9\rangle=[1,2,4,8,9,13,15,16]$
$\langle 10\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]$ *
$\langle 11\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] *$
$\langle 12\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]$ *
$\langle 13\rangle=[1,4,13,16]$
$\langle 14\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]$ *
$\langle 15\rangle=[1,2,4,8,9,13,15,16]$
$\langle 16\rangle=[1,16]$
mod 19:
< 1> = [1]
$\langle 2\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] *$
$\langle 3\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] *$
$\langle 4\rangle=[1,4,5,6,7,9,11,16,17]$
$\langle 5\rangle=[1,4,5,6,7,9,11,16,17]$
$\langle 6\rangle=[1,4,5,6,7,9,11,16,17]$
$\langle 7\rangle=[1,7,11]$
$\langle 8\rangle=[1,7,8,11,12,18]$
$\langle 9\rangle=[1,4,5,6,7,9,11,16,17]$
$\langle 10\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] *$
$\langle 11\rangle=[1,7,11]$
$\langle 12\rangle=[1,7,8,11,12,18]$
$\langle 13\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] *$
$\langle 14\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] *$
$\langle 15\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] *$
$\langle 16\rangle=[1,4,5,6,7,9,11,16,17]$
$\langle 17\rangle=[1,4,5,6,7,9,11,16,17]$
$\langle 18\rangle=[1,18]$
mod 23:
< 1> = [1]
$\langle 2\rangle=[1,2,3,4,6,8,9,12,13,16,18]$
$\langle 3\rangle=[1,2,3,4,6,8,9,12,13,16,18]$
$\langle 4\rangle=[1,2,3,4,6,8,9,12,13,16,18]$
$\langle 5\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] *$
$\langle 6\rangle=[1,2,3,4,6,8,9,12,13,16,18]$
$\langle 7\rangle=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] *$
$\langle 8\rangle=[1,2,3,4,6,8,9,12,13,16,18]$

```
< 9> = [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
<10> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<11> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<12> = [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
<13> = [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
<14> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<15> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<16> = [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
<17> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<18> = [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18]
<19> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<20\rangle = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<21> = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] *
<22> = [1, 22]
```

