郵便配達員問題(奇数次数の頂点が2個)
頂点数 16 のランダムな重みつきグラフの場合

Graph  G :
 0 4 0 4 0 0 0 1 0 0 1 3 5 0 4 4
 4 0 2 0 0 4 2 0 5 0 0 0 0 0 0 1
 0 2 0 0 0 0 0 5 0 0 4 0 5 0 3 3
 4 0 0 0 1 2 0 0 3 0 0 0 0 0 1 0
 0 0 0 1 0 3 0 5 0 0 5 0 0 0 0 0
 0 4 0 2 3 0 0 0 0 0 0 0 1 0 0 0
 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 5 0 5 0 0 0 0 0 1 2 3 0 5 2
 0 5 0 3 0 0 0 0 0 2 3 0 0 0 0 0
 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0
 1 0 4 0 5 0 0 1 3 0 0 2 4 0 1 0
 3 0 0 0 0 0 0 2 0 0 2 0 0 4 0 0
 5 0 5 0 0 1 0 3 0 0 4 0 0 0 5 0
 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0
 4 0 3 1 0 0 0 5 0 1 1 0 5 1 0 0
 4 1 3 0 0 0 0 2 0 0 0 0 0 0 0 0

u = 3
v = 6

Semi-Eulerian Walk from u to v :
3 -> 5 -> 12 -> 0 -> 10 -> 2 -> 12 -> 7 -> 4 -> 10 
-> 7 -> 11 -> 0 -> 14 -> 2 -> 15 -> 1 -> 8 -> 3 
-> 14 -> 9 -> 8 -> 10 -> 11 -> 13 -> 14 -> 10 
-> 12 -> 14 -> 7 -> 15 -> 0 -> 1 -> 2 -> 7 -> 0 
-> 3 -> 4 -> 5 -> 1 -> 6

Minimum Path from v to u :
6 -> 1 -> 5 -> 3

Total Walk :
3 -> 5 -> 12 -> 0 -> 10 -> 2 -> 12 -> 7 -> 4 -> 10 
-> 7 -> 11 -> 0 -> 14 -> 2 -> 15 -> 1 -> 8 -> 3 
-> 14 -> 9 -> 8 -> 10 -> 11 -> 13 -> 14 -> 10 
-> 12 -> 14 -> 7 -> 15 -> 0 -> 1 -> 2 -> 7 -> 0 
-> 3 -> 4 -> 5 -> 1 -> 6 -> 1 -> 5 -> 3

Length = 125