郵便配達員問題(奇数次数の頂点が2個) 頂点数 16 のランダムな重みつきグラフの場合 Graph G : 0 4 0 4 0 0 0 1 0 0 1 3 5 0 4 4 4 0 2 0 0 4 2 0 5 0 0 0 0 0 0 1 0 2 0 0 0 0 0 5 0 0 4 0 5 0 3 3 4 0 0 0 1 2 0 0 3 0 0 0 0 0 1 0 0 0 0 1 0 3 0 5 0 0 5 0 0 0 0 0 0 4 0 2 3 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 5 0 0 0 0 0 1 2 3 0 5 2 0 5 0 3 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 1 0 4 0 5 0 0 1 3 0 0 2 4 0 1 0 3 0 0 0 0 0 0 2 0 0 2 0 0 4 0 0 5 0 5 0 0 1 0 3 0 0 4 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 4 0 3 1 0 0 0 5 0 1 1 0 5 1 0 0 4 1 3 0 0 0 0 2 0 0 0 0 0 0 0 0 u = 3 v = 6 Semi-Eulerian Walk from u to v : 3 -> 5 -> 12 -> 0 -> 10 -> 2 -> 12 -> 7 -> 4 -> 10 -> 7 -> 11 -> 0 -> 14 -> 2 -> 15 -> 1 -> 8 -> 3 -> 14 -> 9 -> 8 -> 10 -> 11 -> 13 -> 14 -> 10 -> 12 -> 14 -> 7 -> 15 -> 0 -> 1 -> 2 -> 7 -> 0 -> 3 -> 4 -> 5 -> 1 -> 6 Minimum Path from v to u : 6 -> 1 -> 5 -> 3 Total Walk : 3 -> 5 -> 12 -> 0 -> 10 -> 2 -> 12 -> 7 -> 4 -> 10 -> 7 -> 11 -> 0 -> 14 -> 2 -> 15 -> 1 -> 8 -> 3 -> 14 -> 9 -> 8 -> 10 -> 11 -> 13 -> 14 -> 10 -> 12 -> 14 -> 7 -> 15 -> 0 -> 1 -> 2 -> 7 -> 0 -> 3 -> 4 -> 5 -> 1 -> 6 -> 1 -> 5 -> 3 Length = 125