組合せとグラフの理論 (塩田)

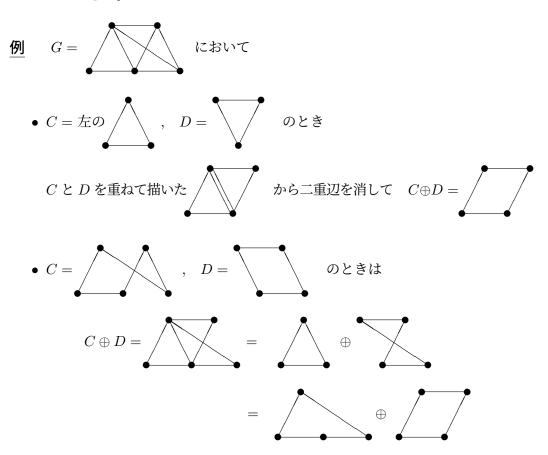
— グラフの閉路部分空間 —

演算 ⊕

• グラフ G の辺の部分集合 C, D に対し、演算 $C \oplus D$ を集合の XOR (排他的論理 和、片方にのみ含まれる辺の集合)で定義する:

$$C \oplus D = C \text{ XOR } D = (C \cup D) - (C \cap D)$$

• C, D が閉路 (の辺集合) ならば、 $C \oplus D$ は辺を共有しない閉路いくつかに分けることができる。



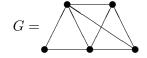
G の閉路部分空間 W(G)

- G 内の閉路から $C_1 \oplus C_2 \oplus \cdots \oplus C_s$ の形で得られる辺の部分集合たちを要素とする集合を W(G) と表し「G の閉路部分空間」と呼ぶ。空集合 \emptyset もその要素とする。
- W(G) は 2 元体 \mathbf{F}_2 上のベクトル空間になる。

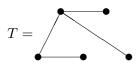
基本閉路集合

- G の全域木 T に、T に含まれない辺 e を付加すると閉路 C_e がひとつだけできる。 そのようにして得られる閉路たちの集合 F(T) を「 T に関連した基本閉路集合」と呼ぶ。
- $\mathcal{F}(\mathcal{T})$ は W(G) の基底になる。

例

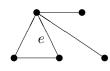


の全域木として



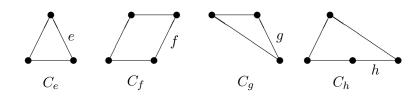
を取ったとき、T に含まれない辺は e, f, g, h の 4 本。

例えば e を T に付加すると



のように閉路がひとつできる。

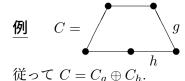
同様に考えると F(T) の要素は次の4つ:



閉路を基本閉路の ⊕ で書くアルゴリズム

 1° T に含まれない C の辺を e_1, e_2, \cdots とする。

 2° $C_{e_1} \oplus C_{e_2} \oplus \cdots$ を出力



g のとき、T に含まれない C の辺は g,h の 2 本。

電気回路への応用

起電力と抵抗から成る電気回路の電流を求める問題では、キルヒホフの法則に従って式 を立てる:

(i) キルヒホフの第 1 法則 頂点では 「 電流の総和 = 0 」 が成り立つ。

(ii) キルヒホフの第2法則

閉路では 「(抵抗値×電流)の総和 = 電圧の総和」 が成り立つ。

このうち (ii) 式は基本閉路に対してのみ立てればよい。なぜなら、閉路たちが

$$D = C_1 \oplus C_2 \oplus \cdots \oplus C_s$$

の関係にあるとき、D についての (ii) 式は C_j たちについての (ii) 式から導かれるからである。