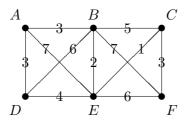
組合せとグラフの理論 (塩田)

2007.6.8

— 最短路問題: Dijkstra のアルゴリズム —

問 次の地図について、A から F への最短路を求めよ。



方針

- \bullet 出発点 A に最も近い点、2 番目に近い点、 \cdots を順に求めてゆく。
- 各点 v に「今まで見つかっている最短距離」 t(v) (仮ラベル)と「本当の最短距離」 $\ell(v)$ (永久ラベル)を考える。
- 最短距離が確定した点の仮ラベルを永久ラベルに昇格させ、それをもとに未昇格点 の仮ラベルを更新する、という作業を反復する。

アルゴリズム

- 1° 出発点 A には 仮ラベル $t(A)=0,\,A$ 以外の全ての点 v には仮ラベル $t(v)=\infty$ を つける。
- 2° 出発点 A の仮ラベルを永久ラベルに昇格させる : $\ell(A)=0$.
- 3° 永久ラベルに昇格した点を x とする。

x に隣接して未昇格の全ての点 v に対して、t(v) を

$$\min(t(v), \ell(x) + w(xv))$$

に更新する。(直前の点を覚えておく。)

4° 仮ラベルが最小の点を永久ラベルに昇格させる:

$$t(v) \to \ell(v)$$

 5° 目的地に永久ラベルが付くまで $Step\ 3^{\circ}-4^{\circ}$ を繰り返す。

実行例

$$A:0$$
 $B:\infty$ $C:\infty$ $D:\infty$ $E:\infty$ $F:\infty$

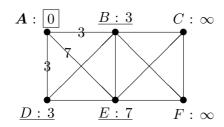
$$t(A) = 0$$
$$t(B) = \infty$$

$$t(C) = \infty$$

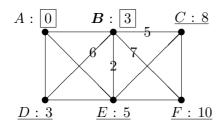
$$t(D) = \infty$$
$$t(E) = \infty$$

$$t(E) = \infty$$

 $\Rightarrow t(A) = 0$ を $\ell(A)$ に昇格



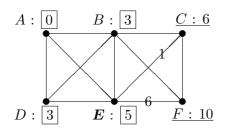
$$t(B) = \min(\infty, 0+3) = 3$$
 (直前は A) $t(C) = \infty$ $t(D) = \min(\infty, 0+3) = 3$ (直前は A) $t(E) = \min(\infty, 0+7) = 7$ (直前は A) $t(F) = \infty$ $\Rightarrow t(B) = 3$ を $\ell(B)$ に昇格



$$t(C) = \min(\infty, 3+5) = 8$$
 (直前は B) $t(D) = \min(3, 3+6) = 3$ (直前は A) $t(E) = \min(7, 3+2) = 5$ (直前は B) $t(F) = \min(\infty, 3+7) = 10$ (直前は B) $\Rightarrow t(D) = 3$ を $\ell(D)$ に昇格

$$A: \boxed{0}$$
 $B: \boxed{3}$ $C: 8$ $D: \boxed{3}$ $E: 5$ $F: 10$

$$t(C)=8$$
 (直前は B) $t(E)=\min(5,3+4)=5$ (直前は B) $t(F)=10$ (直前は B) $\Rightarrow t(E)=5$ を $\ell(E)$ に昇格



$$t(C) = \min(8, 5+1) = 6$$
(直前は E)
 $t(F) = \min(10, 5+6) = 10$ (直前は B)
 $\Rightarrow t(C) = 6$ を $\ell(C)$ に昇格

$$t(F) = \min(10, 6+3) = 9$$
 (直前は C)
$$\Rightarrow t(F) = 9$$
 を $\ell(F)$ に昇格

よって $A \to F$ の最短路は $A \to B \to E \to C \to F$.