Level 307


The ordering of the indices may be different from those in [Shio91], Example 5.2.

Fundamental Data

  • Level q = 307

  • (q,∞)-Quaternion Algebra D = Q[I,J] with I2 = -1, J2 = -307, K = IJ = -JI

  • Class Number H = 26, Type Number T = 16

  • A Maximal Order O in D :
    O = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >

  • Representatives of Left O-Ideal Classes :
    A1 = < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K > ( norm = 4 )
    A2 = < 1+0I+1J+2K, 1I+2J+1K, 4J+0K, 4K > ( norm = 8 )
    A3 = < 1+0I+1J+6K, 1I+2J+1K, 8J+0K, 8K > ( norm = 16 )
    A4 = < 1+0I+1J+2K, 1I+6J+1K, 8J+0K, 8K > ( norm = 16 )
    A5 = < 1+0I+1J+14K, 1I+2J+1K, 16J+0K, 16K > ( norm = 32 )
    A6 = < 1+0I+1J+6K, 1I+10J+1K, 16J+0K, 16K > ( norm = 32 )
    A7 = < 1+0I+1J+10K, 1I+6J+1K, 16J+0K, 16K > ( norm = 32 )
    A8 = < 1+0I+1J+2K, 1I+14J+1K, 16J+0K, 16K > ( norm = 32 )
    A9 = < 1+0I+1J+14K, 1I+18J+1K, 32J+0K, 32K > ( norm = 64 )
    A10 = < 1+0I+17J+22K, 1I+10J+17K, 32J+0K, 32K > ( norm = 64 )
    A11 = < 1+0I+17J+10K, 1I+22J+17K, 32J+0K, 32K > ( norm = 64 )
    A12 = < 1+0I+1J+18K, 1I+14J+1K, 32J+0K, 32K > ( norm = 64 )
    A13 = < 1+0I+33J+46K, 1I+18J+33K, 64J+0K, 64K > ( norm = 128 )
    A14 = < 1+0I+33J+14K, 1I+50J+33K, 64J+0K, 64K > ( norm = 128 )
    A15 = < 1+0I+17J+54K, 1I+10J+17K, 64J+0K, 64K > ( norm = 128 )
    A16 = < 1+0I+17J+10K, 1I+54J+17K, 64J+0K, 64K > ( norm = 128 )
    A17 = < 1+0I+33J+50K, 1I+14J+33K, 64J+0K, 64K > ( norm = 128 )
    A18 = < 1+0I+97J+110K, 1I+18J+97K, 128J+0K, 128K > ( norm = 256 )
    A19 = < 1+0I+33J+78K, 1I+50J+33K, 128J+0K, 128K > ( norm = 256 )
    A20 = < 1+0I+33J+14K, 1I+114J+33K, 128J+0K, 128K > ( norm = 256 )
    A21 = < 1+0I+81J+118K, 1I+10J+81K, 128J+0K, 128K > ( norm = 256 )
    A22 = < 1+0I+81J+10K, 1I+118J+81K, 128J+0K, 128K > ( norm = 256 )
    A23 = < 1+0I+33J+114K, 1I+14J+33K, 128J+0K, 128K > ( norm = 256 )
    A24 = < 1+0I+33J+50K, 1I+78J+33K, 128J+0K, 128K > ( norm = 256 )
    A25 = < 1+0I+97J+238K, 1I+18J+97K, 256J+0K, 256K > ( norm = 512 )
    A26 = < 1+0I+97J+110K, 1I+146J+97K, 256J+0K, 256K > ( norm = 512 )

  • Maximal Orders Oj = (Aj)-1(Aj) :
    O1 = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >
    O2 = (1/4) < 2+0I+2J+4K, 1I+2J+1K, 4J+0K, 8K >
    O3 = (1/8) < 4+0I+4J+24K, 1I+2J+1K, 8J+16K, 32K >
    O4 = (1/8) < 4+0I+4J+8K, 1I+6J+17K, 8J+16K, 32K >
    O5 = (1/16) < 8+0I+8J+112K, 1I+2J+1K, 16J+96K, 128K >
    O6 = (1/16) < 8+0I+8J+48K, 1I+10J+81K, 16J+96K, 128K >
    O7 = (1/16) < 8+0I+8J+80K, 1I+6J+113K, 16J+32K, 128K >
    O8 = (1/16) < 8+0I+8J+16K, 1I+14J+33K, 16J+32K, 128K >
    O9 = (1/32) < 16+0I+16J+224K, 1I+18J+97K, 32J+448K, 512K >
    O10 = (1/32) < 16+0I+16J+352K, 1I+10J+81K, 32J+192K, 512K >
    O11 = (1/32) < 16+0I+16J+160K, 1I+22J+401K, 32J+320K, 512K >
    O12 = (1/32) < 16+0I+16J+288K, 1I+14J+161K, 32J+64K, 512K >
    O13 = (1/64) < 32+0I+32J+1472K, 1I+18J+1121K, 64J+896K, 2048K >
    O14 = (1/64) < 32+0I+32J+448K, 1I+50J+33K, 64J+896K, 2048K >
    O15 = (1/64) < 32+0I+32J+704K, 1I+10J+593K, 64J+1408K, 2048K >
    O16 = (1/64) < 32+0I+32J+1344K, 1I+54J+1233K, 64J+640K, 2048K >
    O17 = (1/64) < 32+0I+32J+1600K, 1I+14J+1185K, 64J+1152K, 2048K >
    O18 = (1/128) < 64+0I+64J+2944K, 1I+18J+7265K, 128J+5888K, 8192K >
    O19 = (1/128) < 64+0I+64J+896K, 1I+50J+2081K, 128J+1792K, 8192K >
    O20 = (1/128) < 64+0I+64J+4992K, 1I+114J+929K, 128J+1792K, 8192K >
    O21 = (1/128) < 64+0I+64J+1408K, 1I+10J+593K, 128J+2816K, 8192K >
    O22 = (1/128) < 64+0I+64J+6784K, 1I+118J+5969K, 128J+5376K, 8192K >
    O23 = (1/128) < 64+0I+64J+3200K, 1I+14J+7329K, 128J+6400K, 8192K >
    O24 = (1/128) < 64+0I+64J+7296K, 1I+78J+289K, 128J+6400K, 8192K >
    O25 = (1/256) < 128+0I+128J+22272K, 1I+18J+31841K, 256J+11776K, 32768K >
    O26 = (1/256) < 128+0I+128J+5888K, 1I+146J+13153K, 256J+11776K, 32768K >

  • Isomorphic Relations Among Oj's :
    O3 is isomorphic to O4
    O6 is isomorphic to O7
    O5 is isomorphic to O8
    O10 is isomorphic to O11
    O9 is isomorphic to O12
    O15 is isomorphic to O16
    O14 is isomorphic to O17
    O21 is isomorphic to O22
    O20 is isomorphic to O23
    O19 is isomorphic to O24

  • Group Order ej of the Unit Group of Oj :
    e1 = 4, ej = 2 ( 2 <= j <= H )

Further Data ( Text Files )

Modular Form Data / Top Page