Level 307
- The ordering of the indices may be different from those in [Shio91], Example 5.2.
Fundamental Data
- Level q = 307
- (q,∞)-Quaternion Algebra D = Q[I,J] with I2 = -1, J2 = -307, K = IJ = -JI
- Class Number H = 26, Type Number T = 16
- A Maximal Order O in D :
O = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >
- Representatives of Left O-Ideal Classes :
A1 = < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K > ( norm = 4 )
A2 = < 1+0I+1J+2K, 1I+2J+1K, 4J+0K, 4K > ( norm = 8 )
A3 = < 1+0I+1J+6K, 1I+2J+1K, 8J+0K, 8K > ( norm = 16 )
A4 = < 1+0I+1J+2K, 1I+6J+1K, 8J+0K, 8K > ( norm = 16 )
A5 = < 1+0I+1J+14K, 1I+2J+1K, 16J+0K, 16K > ( norm = 32 )
A6 = < 1+0I+1J+6K, 1I+10J+1K, 16J+0K, 16K > ( norm = 32 )
A7 = < 1+0I+1J+10K, 1I+6J+1K, 16J+0K, 16K > ( norm = 32 )
A8 = < 1+0I+1J+2K, 1I+14J+1K, 16J+0K, 16K > ( norm = 32 )
A9 = < 1+0I+1J+14K, 1I+18J+1K, 32J+0K, 32K > ( norm = 64 )
A10 = < 1+0I+17J+22K, 1I+10J+17K, 32J+0K, 32K > ( norm = 64 )
A11 = < 1+0I+17J+10K, 1I+22J+17K, 32J+0K, 32K > ( norm = 64 )
A12 = < 1+0I+1J+18K, 1I+14J+1K, 32J+0K, 32K > ( norm = 64 )
A13 = < 1+0I+33J+46K, 1I+18J+33K, 64J+0K, 64K > ( norm = 128 )
A14 = < 1+0I+33J+14K, 1I+50J+33K, 64J+0K, 64K > ( norm = 128 )
A15 = < 1+0I+17J+54K, 1I+10J+17K, 64J+0K, 64K > ( norm = 128 )
A16 = < 1+0I+17J+10K, 1I+54J+17K, 64J+0K, 64K > ( norm = 128 )
A17 = < 1+0I+33J+50K, 1I+14J+33K, 64J+0K, 64K > ( norm = 128 )
A18 = < 1+0I+97J+110K, 1I+18J+97K, 128J+0K, 128K > ( norm = 256 )
A19 = < 1+0I+33J+78K, 1I+50J+33K, 128J+0K, 128K > ( norm = 256 )
A20 = < 1+0I+33J+14K, 1I+114J+33K, 128J+0K, 128K > ( norm = 256 )
A21 = < 1+0I+81J+118K, 1I+10J+81K, 128J+0K, 128K > ( norm = 256 )
A22 = < 1+0I+81J+10K, 1I+118J+81K, 128J+0K, 128K > ( norm = 256 )
A23 = < 1+0I+33J+114K, 1I+14J+33K, 128J+0K, 128K > ( norm = 256 )
A24 = < 1+0I+33J+50K, 1I+78J+33K, 128J+0K, 128K > ( norm = 256 )
A25 = < 1+0I+97J+238K, 1I+18J+97K, 256J+0K, 256K > ( norm = 512 )
A26 = < 1+0I+97J+110K, 1I+146J+97K, 256J+0K, 256K > ( norm = 512 )
- Maximal Orders Oj = (Aj)-1(Aj) :
O1 = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >
O2 = (1/4) < 2+0I+2J+4K, 1I+2J+1K, 4J+0K, 8K >
O3 = (1/8) < 4+0I+4J+24K, 1I+2J+1K, 8J+16K, 32K >
O4 = (1/8) < 4+0I+4J+8K, 1I+6J+17K, 8J+16K, 32K >
O5 = (1/16) < 8+0I+8J+112K, 1I+2J+1K, 16J+96K, 128K >
O6 = (1/16) < 8+0I+8J+48K, 1I+10J+81K, 16J+96K, 128K >
O7 = (1/16) < 8+0I+8J+80K, 1I+6J+113K, 16J+32K, 128K >
O8 = (1/16) < 8+0I+8J+16K, 1I+14J+33K, 16J+32K, 128K >
O9 = (1/32) < 16+0I+16J+224K, 1I+18J+97K, 32J+448K, 512K >
O10 = (1/32) < 16+0I+16J+352K, 1I+10J+81K, 32J+192K, 512K >
O11 = (1/32) < 16+0I+16J+160K, 1I+22J+401K, 32J+320K, 512K >
O12 = (1/32) < 16+0I+16J+288K, 1I+14J+161K, 32J+64K, 512K >
O13 = (1/64) < 32+0I+32J+1472K, 1I+18J+1121K, 64J+896K, 2048K >
O14 = (1/64) < 32+0I+32J+448K, 1I+50J+33K, 64J+896K, 2048K >
O15 = (1/64) < 32+0I+32J+704K, 1I+10J+593K, 64J+1408K, 2048K >
O16 = (1/64) < 32+0I+32J+1344K, 1I+54J+1233K, 64J+640K, 2048K >
O17 = (1/64) < 32+0I+32J+1600K, 1I+14J+1185K, 64J+1152K, 2048K >
O18 = (1/128) < 64+0I+64J+2944K, 1I+18J+7265K, 128J+5888K, 8192K >
O19 = (1/128) < 64+0I+64J+896K, 1I+50J+2081K, 128J+1792K, 8192K >
O20 = (1/128) < 64+0I+64J+4992K, 1I+114J+929K, 128J+1792K, 8192K >
O21 = (1/128) < 64+0I+64J+1408K, 1I+10J+593K, 128J+2816K, 8192K >
O22 = (1/128) < 64+0I+64J+6784K, 1I+118J+5969K, 128J+5376K, 8192K >
O23 = (1/128) < 64+0I+64J+3200K, 1I+14J+7329K, 128J+6400K, 8192K >
O24 = (1/128) < 64+0I+64J+7296K, 1I+78J+289K, 128J+6400K, 8192K >
O25 = (1/256) < 128+0I+128J+22272K, 1I+18J+31841K, 256J+11776K, 32768K >
O26 = (1/256) < 128+0I+128J+5888K, 1I+146J+13153K, 256J+11776K, 32768K >
- Isomorphic Relations Among Oj's :
O3 is isomorphic to O4
O6 is isomorphic to O7
O5 is isomorphic to O8
O10 is isomorphic to O11
O9 is isomorphic to O12
O15 is isomorphic to O16
O14 is isomorphic to O17
O21 is isomorphic to O22
O20 is isomorphic to O23
O19 is isomorphic to O24
- Group Order ej of the Unit Group of Oj :
e1 = 4,
ej = 2 ( 2 <= j <= H )
Further Data ( Text Files )
-
Factorization of the Characteristic Polynomials of the Hecke Operators on S2+(Γ0(q))
-
Factorization of the Characteristic Polynomials of the Hecke Operators on M2-(Γ0(q)) ( Including the Eisenstein Series )
- The eigenvalues of B(11) and the common eigenvectors vj ( j = 1, ..., H ) of B(n)'s
- The j-th line of this text file indicates the associated eigenvalue and the transposed vector of vj = ( vij ), i.e.,
those data are stored in the order
     for j = 1 to H
         the eigenvalue, v1j, v2j, ... , vH,j
- Representatives { Aij } i = 1,...,H of Left Oj-Ideal Classes
- Theta Series θij Associated to Aij ( 1.1MB )
- The range of the Fourier expansion = 1024
- The Fourier coefficients of ej θij(z) = Σn=0,1,2,... aij(n) exp(2πinz) are stored in the order
     for j = 1 to H
         for i = j to H
             aij(0), aij(1), ..., aij(1024)
Modular Form Data / Top Page