Level 151


The ordering of the indices may be different from those in [Shio91], Example 4.1.

Fundamental Data

  • Level q = 151

  • (q,∞)-Quaternion Algebra D = Q[ I, J ] with I2 = -1, J2 = -151, K = IJ = -JI

  • Class Number H = 13, Type Number T = 10

  • A Maximal Order O in D :
    O = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >

  • Representatives of Left O-Ideal Classes :
    A1 = < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K > ( norm = 4 )
    A2 = < 1+0I+1J+0K, 1I+0J+1K, 4J+0K, 4K > ( norm = 8 )
    A3 = < 1+0I+5J+0K, 1I+0J+5K, 8J+0K, 8K > ( norm = 16 )
    A4 = < 1+0I+5J+4K, 1I+4J+5K, 8J+0K, 8K > ( norm = 16 )
    A5 = < 1+0I+5J+0K, 1I+0J+5K, 16J+0K, 16K > ( norm = 32 )
    A6 = < 1+0I+5J+8K, 1I+8J+5K, 16J+0K, 16K > ( norm = 32 )
    A7 = < 1+0I+13J+12K, 1I+4J+13K, 16J+0K, 16K > ( norm = 32 )
    A8 = < 1+0I+13J+4K, 1I+12J+13K, 16J+0K, 16K > ( norm = 32 )
    A9 = < 1+0I+5J+16K, 1I+16J+5K, 32J+0K, 32K > ( norm = 64 )
    A10 = < 1+0I+5J+24K, 1I+8J+5K, 32J+0K, 32K > ( norm = 64 )
    A11 = < 1+0I+5J+8K, 1I+24J+5K, 32J+0K, 32K > ( norm = 64 )
    A12 = < 1+0I+29J+28K, 1I+4J+29K, 32J+0K, 32K > ( norm = 64 )
    A13 = < 1+0I+29J+4K, 1I+28J+29K, 32J+0K, 32K > ( norm = 64 )

  • Maximal Orders Oj = (Aj)-1(Aj) :
    O1 = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >
    O2 = (1/4) < 2+0I+2J+0K, 1I+0J+5K, 4J+0K, 8K >
    O3 = (1/8) < 4+0I+4J+0K, 1I+0J+5K, 8J+0K, 32K >
    O4 = (1/8) < 4+0I+4J+16K, 1I+4J+29K, 8J+0K, 32K >
    O5 = (1/16) < 8+0I+8J+0K, 1I+0J+101K, 16J+0K, 128K >
    O6 = (1/16) < 8+0I+8J+64K, 1I+8J+69K, 16J+0K, 128K >
    O7 = (1/16) < 8+0I+8J+96K, 1I+4J+93K, 16J+64K, 128K >
    O8 = (1/16) < 8+0I+8J+32K, 1I+12J+29K, 16J+64K, 128K >
    O9 = (1/32) < 16+0I+16J+256K, 1I+16J+101K, 32J+0K, 512K >
    O10 = (1/32) < 16+0I+16J+384K, 1I+8J+325K, 32J+256K, 512K >
    O11 = (1/32) < 16+0I+16J+128K, 1I+24J+69K, 32J+256K, 512K >
    O12 = (1/32) < 16+0I+16J+192K, 1I+4J+477K, 32J+384K, 512K >
    O13 = (1/32) < 16+0I+16J+320K, 1I+28J+93K, 32J+128K, 512K >

  • Isomorphic Relations Among Oj's :
    O7 is isomorphic to O8
    O10 is isomorphic to O11
    O12 is isomorphic to O13

  • Group Order ej of the Unit Group of Oj :
    e1 = 4, ej = 2 ( 2 <= j <= H )

Further Data ( Text Files )

Modular Form Data / Top Page