Level 67


The ordering of the indices may be different from those in [Shio91], Example 1.10.

Fundamental Data

  • Level q = 67

  • (q,∞)-Quaternion Algebra D = Q[I,J] with I2 = -1, J2 = -67, K = IJ = -JI

  • Class Number H = 6, Type Number T = 4

  • A Maximal Order O in D :
    O = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >

  • Representatives of Left O-Ideal Classes :
    A1 = < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K > ( norm = 4 )
    A2 = < 1+0I+1J+2K, 1I+2J+1K, 4J+0K, 4K > ( norm = 8 )
    A3 = < 1+0I+1J+6K, 1I+2J+1K, 8J+0K, 8K > ( norm = 16 )
    A4 = < 1+0I+1J+2K, 1I+6J+1K, 8J+0K, 8K > ( norm = 16 )
    A5 = < 1+0I+9J+6K, 1I+10J+9K, 16J+0K, 16K > ( norm = 32 )
    A6 = < 1+0I+9J+10K, 1I+6J+9K, 16J+0K, 16K > ( norm = 32 )

  • Maximal Orders Oj = (Aj)-1(Aj) :
    O1 = (1/2) < 1+0I+1J+0K, 1I+0J+1K, 2J+0K, 2K >
    O2 = (1/4) < 2+0I+2J+4K, 1I+2J+1K, 4J+0K, 8K >
    O3 = (1/8) < 4+0I+4J+24K, 1I+2J+9K, 8J+16K, 32K >
    O4 = (1/8) < 4+0I+4J+8K, 1I+6J+25K, 8J+16K, 32K >
    O5 = (1/16) < 8+0I+8J+48K, 1I+10J+121K, 16J+96K, 128K >
    O6 = (1/16) < 8+0I+8J+80K, 1I+6J+25K, 16J+32K, 128K >

  • Isomorphic Relations Among Oj's :
    O3 is isomorphic to O4
    O5 is isomorphic to O6

  • Group Order ej of the Unit Group of Oj :
    e1 = 4, ej = 2 ( 2 <= j <= H )

Further Data ( Text Files )

Modular Form Data / Top Page